

SECRETARÍA GENERAL DE FORMACIÓN PROFESIONAL

INSTITUTO NACIONAL DE LAS CUALIFICACIONES

PROCEDIMIENTO DE EVALUACIÓN Y ACREDITACIÓN DE LAS COMPETENCIAS PROFESIONALES

CUESTIONARIO DE AUTOEVALUACIÓN PARA LAS TRABAJADORAS Y TRABAJADORES

UNIDAD DE COMPETENCIA

"UC2625_3: Realizar procesos de escaneado y reparación de mallas 3d"

LEA ATENTAMENTE LAS INSTRUCCIONES

Conteste a este cuestionario de **FORMA SINCERA**. La información recogida en él tiene CARÁCTER RESERVADO, al estar protegida por lo dispuesto en la Ley Orgánica 15/1999, de 13 de diciembre, de protección de datos de carácter personal.

Su resultado servirá solamente para ayudarle, ORIENTÁNDOLE en qué medida posee la competencia profesional de la "UC2625_3: Realizar procesos de escaneado y reparación de mallas 3D".

No se preocupe, con independencia del resultado de esta autoevaluación, Ud. TIENE DERECHO A PARTICIPAR EN EL PROCEDIMIENTO DE EVALUACIÓN, siempre que cumpla los requisitos de la convocatoria.

Nombre y apellidos del trabajador/a: NIF:	Firma:
Nombre y apellidos del asesor/a:	Firma:
NIF:	

INSTRUCCIONES CUMPLIMENTACIÓN DEL CUESTIONARIO:

Las actividades profesionales aparecen ordenadas en bloques desde el número 1 en adelante. Cada uno de los bloques agrupa una serie de actividades más simples (subactividades) numeradas con 1.1., 1.2.,..., en adelante.

Lea atentamente la actividad profesional con que comienza cada bloque y a continuación las subactividades que agrupa. Marque con una cruz, en los cuadrados disponibles, el indicador de autoevaluación que considere más ajustado a su grado de dominio de cada una de ellas. Dichos indicadores son los siguientes:

- 1. No sé hacerlo.
- 2. Lo puedo hacer con ayuda.
- 3. Lo puedo hacer sin necesitar ayuda.
- 4. Lo puedo hacer sin necesitar ayuda, e incluso podría formar a otro trabajador o trabajadora.

1: Determinar los escáneres a utilizar relacionándolos con las aplicaciones para los que están destinados para obtener diseños 3D, valorando las características de cada uno.	INDICADORES DE AUTOEVALUACIÓN			
	1	2	3	4
1.1: Determinar las tipologías de escaneado 3D, comparando cada una de ellas en función de sus características como versatilidad, facilidad de uso, diseño, calidad, entre otras.				
1.2: Valorar los principios físicos que intervienen en las diferentes tecnologías aplicadas al escaneo 3D atendiendo a las necesidades del objeto a escanear.				
1.3: Determinar las aplicaciones de escaneado 3D mediante su uso, práctica y estudio.				
1.4: Valorar las tipologías de escaneado teniendo en cuenta sus ventajas y limitaciones en función de las necesidades del objeto a escanear.				
1.5: Seleccionar la tipología de escáner 3D en función de las aplicaciones a las que se destina y las necesidades industriales específicas aplicando las características requeridas, tales como la precisión y la resolución del objeto a escanear, entre otras.				

2: Realizar el escaneado generando un diseño tridimensional del		INDICADORES DE AUTOEVALUACIÓN			
objeto.	1	2	3	4	
2.1: Caracterizar el proceso de escaneado a realizar en los diferentes sistemas siguiendo las etapas propias de cada técnica, atendiendo a las características de cada una de ellas y determinando cuál se adecúa mejor para generar el diseño tridimensional.					
2.2: Determinar los problemas derivados de la gestión de nubes de puntos y de los procesos matemáticos para definir superficies por triangulación, estableciendo la cantidad de polígonos que conformarán el diseño.					
2.3: Determinar los mecanismos necesarios para escanear en 3D la geometría, la textura y el color de los objetos mediante el software y las herramientas específicas de escaneado.					
2.4: Definir los términos propios de la técnica de escaneado 3D, estableciendo la utilidad y el funcionamiento de cada una de las partes que lo conforman.					
2.5: Aplicar los procesos de ingeniería inversa para su implantación en ramas tecnológicas, considerando las ventajas que supone dicha técnica, obteniendo nuevos diseños y acortando los tiempos de producción.					
2.6: Valorar la importancia del escaneado para procesos de ingeniería inversa, analizando las ventajas de la obtención de modelos 3D de objetos que no posean diseños previos y su posterior reproducción a escala industrial.					
3: Escanear objetos para impresión 3D para generar su diseño		INDICADORES DE AUTOEVALUACIÓN			
mediante programas de fotogrametría, utilizando un escáner estándar.	1	2	3	4	
3.1: Generar la nube de puntos a partir de fotografías del objeto en las posiciones establecidas utilizando software de escaneado, de manera que se obtengan el número de puntos suficientes para generar el objeto.					
3.2: Generar la malla 3D a partir de la nube de puntos, editando dicha malla y haciéndolas coincidir para generar un diseño orgánico mediante un algoritmo matemático.					

2. Econocy chietes neve impresión 2D neve general el diseño		INDICADORES DE AUTOEVALUACIÓN			
3: Escanear objetos para impresión 3D para generar su diseño mediante programas de fotogrametría, utilizando un escáner estándar.	1	2	3	4	
3.3: Corregir las mallas 3D para generar un diseño 3D tridimensional mediante técnicas de suavizado y refinado, entre otras.					
3.4: Convertir la malla en un objeto sólido digital, rellenando el volumen interior del diseño obtenido a partir de la superposición de nuevas mallas.					
3.5: Recoger la información de la geometría y las características del objeto, asegurando que las mallas y el relleno sólido conforman un objeto estable, atendiendo a su morfología, mediante su análisis.					
3.6: Generar el archivo STL como resultado del proceso, considerando las variables que han intervenido. a partir de la sucesión de pasos anteriores.					
4. Italizar antiquaignes máviles y software conceítico de		INDICADORES DE AUTOEVALUACIÓN			
4: Utilizar aplicaciones móviles y software específico de fotogrametría con el objetivo de escanear objetos para impresión 3D para generar el modelo tridimensional lo más orgánico posible.	1	2	3	4	
4.1: Escanear el objeto para obtener diseños en 3D, empleando software específico de fotogrametría o aplicaciones fotográficas para teléfonos móviles.					
4.2: Corregir las mallas 3D generadas a través de programas de escaneo 3D, depurando y enlazando dónde sea requerido, atendiendo a la morfología del objeto.					
4.3: Generar el modelo tridimensional de cada malla a partir de los escáneres obtenidos anteriormente, aplicando las ediciones llevadas a cabo para la obtención del diseño 3D.					
4.4: Planificar el modelo en el formato establecido (generalmente STL) atendiendo a las características del objeto escaneado.					
4.5: Analizar la calidad en la geometría y las texturas obtenidas en los escaneos se analizan mediante observación y comparación visual del diseño 3D con el objeto escaneado.					

5: Reparar archivos STL que han sido dañados o se encuentran		INDICADORES DE AUTOEVALUACIÓN			
incompletos, para conseguir diseños de objetos tridimensionales empleando software de edición.	1	2	3	4	
5.1: Identificar la morfología de una malla STL mediante el uso de software específico de modelado 3D, observando el comportamiento de la malla de triángulos que genera el objeto tridimensional.					
5.2: Reconocer los errores de la malla, utilizando programas específicos de modelado 3D para poder delimitar los errores y establecer un plan de actuación para solucionarlo.					
5.3: Reparar la malla corrupta mediante nuevos triángulos creando una malla euclidiana, sin agujeros, lo más similar posible al diseño real.					
5.4: Unir el conjunto de mallas mediante el software específico de edición 3D para crear un nuevo modelo STL, generando una estructura más estable.					
5.5: Orientar la malla hacia un mismo lado, invirtiendo los polígonos que la forman respetando su estructura.					